
COMMUNICATION NETWORK.  
NOISE CHARACTERISTICS OF A CHANNEL 

Redundancy 
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Communication Network 

• Consider a source of communication with a 
given alphabet. The source is linked to the 
receiver via a channel. 

• The system may be described by a joint 
probability matrix: by giving the probability of 
the joint occurrence of two symbols, one at 
the input and another at the output. 
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Communication Network 

• xk – a symbol, which was sent; yj - a symbol, 
which was received 

• The joint probability matrix: 
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Communication Network: 
Probability Schemes 

• There are following five probability schemes of 
interest in a product space of the random 
variables X and Y: 

• [P{X,Y}] – joint probability matrix 

• [P{X}] – marginal probability matrix of X 

• [P{Y}] – marginal probability matrix of Y 

• [P{X|Y}] – conditional probability matrix of X|Y 

• [P{Y|X}] – conditional probability matrix of Y|X 
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Communication Network: 
Entropies 

• There is the following interpretation of the five entropies 
corresponding to the mentioned five probability schemes: 
 

• H(X,Y) – average information per pairs of transmitted and received 
characters (the entropy of the system as a whole); 

• H(X) – average information per character of the source (the 
entropy of the source) 

• H(Y) – average information per character at the destination (the 
entropy at the receiver) 

• H(Y|X) – a specific character xk being transmitted and one of the 
permissible yj may be received (a measure of information about the 
receiver, where it is known what was transmitted) 

• H(X|Y) – a specific character yj being received ; this may be a result 
of transmission of one of the xk with a given probability (a measure 
of information about the source, where it is known what was 
received) 
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Communication Network: 
Entropies’ Meaning 

• H(X) and H(Y) give indications of the 
probabilistic nature of the transmitter and 
receiver, respectively.  

• H(X,Y) gives the probabilistic nature of the 
communication channel as a whole (the entropy 
of the union of X and Y). 

• H(Y|X) gives an indication of the noise (errors) in 
the channel 

• H(X|Y) gives a measure of equivocation (how 
well one can recover the input content from the 
output) 
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Communication Network: 
Derivation of the Noise Characteristics 

• In general, the joint probability matrix is not 
given for the communication system. 

• It is customary to specify the noise 
characteristics of a channel and the source 
alphabet probabilities. 

• From these data the joint and the output 
probability matrices can be derived. 
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Communication Network: 
Derivation of the Noise Characteristics 

• Let us suppose that we have derived the joint 
probability matrix: 
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Communication Network: 
Derivation of the Noise Characteristics 

• In other words : 

 

• where: 
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Communication Network: 
Derivation of the Noise Characteristics 

• If [P{X}] is not diagonal, but a row matrix    
(n-dimensional vector) then 

 

 

• where [P{Y}] is also a row matrix                  
(m-dimensional vector) designating the 
probabilities of the output alphabet. 
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Communication Network: 
Derivation of the Noise Characteristics 

• Two discrete channels of our particular 
interest: 

• Discrete noise-free channel (an ideal channel) 

• Discrete channel with independent input-
output (errors in the channel occur, thus noise 
is presented)  
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Noise-Free Channel 

• In such channels, every letter of the input 
alphabet is in a one-to-one correspondence 
with a letter of the output alphabet. Hence 
the joint probability matrix is of diagonal 
form: 
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Noise-Free Channel 

• The channel probability matrix is also of 
diagonal form: 

 

 

 

 

• Hence the entropies  
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Noise-Free Channel 

• The entropies H(X,Y), H(X), and H(Y): 
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Noise-Free Channel 

• Each transmitted symbol is in a one-to-one 
correspondence with one, and only one, 
received symbol. 

• The entropy at the receiving end is exactly the 
same as at the sending end. 

• The individual conditional entropies are all 
equal to zero because any received symbol is 
completely determined by the transmitted 
symbol and vise versa. 
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Discrete Channel with Independent 
Input-Output 

• In this channel, there is no correlation 
between input and output symbols: any 
transmitted symbol xi can be received as any 
symbol yj of the receiving alphabet with equal 
probability: 
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Discrete Channel with Independent 
Input-Output 

• Since the input and output symbol 
probabilities are statistically independent, 
then 
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Discrete Channel with Independent 
Input-Output 

 

 

 

 

 

• The last two equations show that this channel 
conveys no information: a symbol that is 
received does not depend on a symbol that 
was sent 
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Noise-Free Channel vs Channel 
with Independent Input-Output 

• Noise-free channel is a loss-less channel, but it 
carries no information. 

• Channel with independent input/output is a 
completely lossy channel, but the information 
transmitted over it is a pure noise. 

• Thus these two channels are two “extreme“ 
channels. In the real world, real 
communication channels are in the middle, 
between these two channels. 
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Basic Relationships among Different 
Entropies in a  

Two-Port Communication Channel 

• We have to take into account that 

 

 

 

• Hence 
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Basic Relationships among Different 
Entropies in a  

Two-Port Communication Channel 
• Fundamental Shannon’s inequalities: 

 

• The conditional entropies never exceed the 
marginal ones.  

• The equality sigh hold if, and only if X and Y 
are statistically independent and therefore  
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Mutual Information 

• What is a mutual information between              
xi , which was transmitted and yj, which was 
received, that is, the information conveyed by 
a pair of symbols (xi, yj)? 
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Mutual Information 
• This probability determines the a posteriori 

knowledge of what was transmitted 
 
 
 

• This probability determines the a priori 
knowledge of what was transmitted 

• The ratio of these two probabilities (more exactly 
– its logarithm) determines the gain of 
information 
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Mutual and Self-Information 

• The function               is the self-information of 
a symbol xi (it shows a priori knowledge that xi 
was transmitted  with the probability p(xi) and 
a posteriori knowledge is that xi has definitely 
been transmitted). 

• The function               is the self-information of 
a symbol yi (it shows a priori knowledge that yi 
was received  with the probability p(yi) and a 
posteriori knowledge is that yi has definitely 
been received). 
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Mutual and Self-Information 

• For the self-information: 

 

 

• The mutual information does not exceed the 
self-information: 
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Mutual Information 

• The mutual information of all the pairs of 
symbols can be obtained by averaging the 
mutual information per symbol pairs:  
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Mutual Information 

• The mutual information of all the pairs of 
symbols I(X;Y) shows the amount of 
information containing in average in one 
received message with respect to the one 
transmitted message 

• I(X;Y) is also referred to as transinformation 
(information transmitted through the channel) 
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Mutual Information 
• Just to recall: 
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Mutual Information 
• It follows from the equations from the previous 

slide that: 
 
 
 

• H(X|Y) shows an average loss of information for a 
transmitted message with respect to the received 
one 

• H(Y|X) shows a loss of information for a received 
message with respect to the transmitted one  
 
 
 
 

29 

       

     

     

;

; |

,

|;

I X Y

I X Y H X

HH X

Y

HI

H Y

H

X

X

Y

X

Y

Y

XY H

  

 

 

         | |, H X Y H H YH X Y X H XY  



Mutual Information 

• For a noise-free channel, 
I(X;Y)=H(X)=H(Y)=H(X,Y) ,which means that 
the information transmitted through this 
channel does not depend on what was      
sent/received. It is always completely 
predetermined by the transmitted content.  
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Mutual Information 

• For a channel with independent input/output , 
I(X;Y)=H(X)-H(X|Y)= H(X)-H(X)=0 ,which 
means that no information is transmitted 
through this channel.  
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Channel Capacity 

• The channel capacity (bits per symbol) is the 
maximum of transinformation with respect to 
all possible sets of probabilities that could be 
assigned to the source alphabet (C. Shannon): 

 

 

• The channel capacity determines the upper 
bound of the information that can be 
transmitted through the channel 
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Rate of Transmission of 
Information through the Channel 

• If all the transmitted symbols have a common 
duration of t seconds then the rate of 
transmission of information through the 
channel (bits per second or capacity per 
second) is 

33 

1
tC C

t




Absolute Redundancy 

• Absolute redundancy of the communication 
system is the difference between the 
maximum amount of information, which can 
be transmitted through the channel and its 
actual amount: 
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Relative Redundancy 

• Relative redundancy of the communication 
system is the ratio of absolute redundancy to 
channel capacity: 
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